正文开始自己以前是个表哥,虽然现在不做了,但对于报表很有感情,今天就跟大家聊聊报表治理吧。数据质量是报表的生命线,任何一个企业的报表在发展到一定阶段后,都会出现一系列不可用问题,包括报表体系混乱、报表口径不一致、报表口径不透明、报表冗余度不断加大等等问题,报表系统是典型的熵值不断增加的系统。在报表越来越多,越来越复杂的同时,报表的边际效应却越来越低,存在典型的2/8现象,甚至比这个情况更严重。一般公司的报表之所以不会有什么大问题,往往是以大量报哥的血泪付出为代价的,很多人耗尽了自己的职业生涯,但大多是在补数据管理不完善的坑。什么叫做管理不完善?举个例子,假如公司没有明确谁是报表体系的管理者,报表的分类就会乱七八糟,报表的使用门槛就会变得很高。假如没有明确报表归属责任人,意味着这个报表对应的指标口径就会缺乏权威性,不一致现象马上就会出现,这些都是问题的根源。公司可以躺倒不作为,报表的混乱大多时候要不了公司的命,因此如果要自救,表哥一般自己先要站出来,主动去推动数据治理项目的实施。这里讲一个自己很久以前对流量报表体系进行治理的一次尝试,希望大家能从这个案例获得启示。数据治理一般都建议公司组织先行,但实际大多数企业是很难具备条件的,因为这种事情在公司看来都是小事。跟你说个笑话,IT系统运维你如果从来不出事,可能公司会认为理所当然,对你的重视程度甚至会下降,哪天你顶不住了突然跑出来向公司说我要钱提升运维自动化水平,可能公司还不太认可,原来不是好好的吗。报表其实也会陷入这样的困境。在这个案例中,并没有推进什么公司级组织保障,只是找到相关的核心业务人员(有某一类报表的话语权),阐明做这件事情的价值,获得认可后就可以做了,只要人家不反对,就有治理的可能,这也是一种组织的保障。当然你一定要努力打造出一种双赢的局面,不能光说给IT带来了多大的价值,比如降低了多少冗余,减少了多少运维人员投入,这个其实跟业务人员没有关系,你得说我给你带来了多少好处。1、报表体系梳理整个公司的存量报表体系往往非常庞大,很难毕其功于一役的进行梳理,因此一定要限制治理的业务范围,比如我们原来有市场经营、*企业务、全业务、数据业务、客服服务等10大类报表,本次就选择了公司最为